free stats

8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula

Alshehry, A. S. & Belloumi, M. Activity consumption, carbon dioxide emissions and bread-and-butter growth: the case of Saudi Arabia. Renew. Sustain. Activity Rev. 41, 237–247 (2015).

2-methylpropane expanded structural formula
 Hydrocarbons – Chemistry: Atoms First 8e

Andres, R. J. et al. A amalgam of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences. 9, 1845–1871 (2012).

Wolfram, C., Shelef, O. & Gertler, P. How will activity appeal advance in the developing world? J. Bread-and-butter Perspectives 26, 119–138 (2012).

Andres, R. J., Gregg, J. S., Losy, L., Marland, G. & Boden, T. A. Monthly, all-around emissions of carbon dioxide from deposit ammunition consumption. Tellus. 63B, 309–327 (2011).

Shafiee, S. & Topal, E. back will deposit ammunition affluence be diminished? Activity policy. 37, 181–189 (2009).

Moriarty, P. & Honnery, D. Can renewable activity ability the future? Activity policy. 93, 3–7 (2016).

De Fraiture, C., Giordano, M. & Liao, Y. Biofuels and implications for agronomical baptize use: dejected impacts of blooming energy. Baptize action 10 supplement. 1, 67–81 (2008).

Sorda, G., Banse, M. & Kemfert, C. An overview of biofuel behavior beyond the world. Activity policy. 38, 6877–6988 (2010).

Höinghaus, K. K. et al. Biofuel agitation chemistry: from booze to biodiesel. Angew. Chem. Int. Ed. 49, 3572–3597 (2010).

Gogoi, B. et al. Effect of 2, 5-dimethylfuran accession to agent on charcoal nanostructure and reactivity. Fuel. 159, 766–775 (2015).

Jacobson, M. Z. Furnishings of booze (E85) against gasoline cartage on blight and bloodshed in the United States. Environ. Sci. Technol. 41, 4150–4157 (2007).

Pinto, B. P., De Lyra, J. T., Nascimento, J. A. C. & Mota, C. J. A. Ethers of glycerol and booze as bio additives for biodiesel. Fuel. 168, 76–80 (2016).

Sun, J. & Liu, H. Careful hydrogenolysis of biomass-derived xylitol to ethylene glycol and propylene glycol on accurate Ru catalysts. Blooming Chem. 13, 135–142 (2011).

Guo, X. et al. About-face of biomass-derived sorbitol to glycols over carbon-materials accurate Ru- based catalysts. Sci. Rep. 5, 1–9 (2015).

Wang, A. & Zhang, T. One-pot about-face of artificial to ethylene glycol with multifunctional tungsten – based catalysts. Acc. Chem. Res. 46, 1377–1386 (2013).

Liu, Y., Luo, C. & Liu, H. Tungsten trioxide answer careful about-face of artificial into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew. Chem. 124, 3303–3307 (2012).

Ooms, R. et al. About-face of sugars to ethylene glycol with nickel tungsten carbide in a fed-batch reactor: aerial abundance and acknowledgment arrangement elucidation. Blooming Chem. 16, 695–707 (2014).

Xiao, Z., Jin, S., Pang, M. & Lianq, C. About-face of awful concentrated artificial to 1, 2-propanediol and ethylene glycol over awful able CuCr catalysts. Blooming Chem. 15, 891–895 (2013).

Tai, Z. et al. Catalytic about-face of artificial to ethylene glycol over a bargain bifold agitator of Raney Ni and Tungstic acid. ChemSusChem. 6, 652–658 (2013).

Yue, H., Zhao, Y., Ma, X. & Gong, J. Ethylene glycol: properties, amalgam and applications. Chem. Soc. Rev. 41, 4218–4244 (2012).

Mushrush, G. W. et al. Jet ammunition arrangement icing inhibitor: amalgam and characterization. Ind. Eng. Chem. Res. 38, 2497–2502 (1999).

Glycol Ethers 2-Methoxyethanol and 2-Ethoxyethanol. DHHS (NIOSH) Publication Number 39, 83–112 (1983).

Császár, A. G., Allen, W. D. & Schaefer, H. F. III In afterward of the ab initio absolute for conformational activity prototypes. J. Chem. Phys. 108, 9751–9764 (1998).

Császár, A. G., Leininger, M. L. & Szalay, V. The accepted enthalpy of accumulation of CH2. J. Chem. Phys. 118, 10631 (2003).

Allinger, N. L., Fermann, J. T., Allen, W. D. & Schaefer, H. F. III The torsional conformations of butane: Definitive energetics from ab initio methods. J. Chem. Phys. 106, 5143–5150 (1997).

Balabin, R. M. Intermolecular burning interactions of accustomed alkanes with attenuate gas atoms: vander Waals complexes of n-pentane with helium, neon, and argon. Chem. Phys. 352, 267–275 (2008).

Karton, A., Rabinovich, E., Martin, J. M. L. & Ruscic, B. W4 approach for computational thermochemistry: In afterward of assured sub-kJ/mol predictions. J. Chem. Phys. 125, 144108-144108-17 (2006).

2-methylpropane expanded structural formula
 Hydrocarbons - Chemistry 8e - OpenStax

Tajti, A. et al. HEAT: aerial accurateness extrapolated ab initio thermochemistry. J. Chem. Phys. 121, 11599–11613 (2004).

Salam, A. & Deleuze, M. S. High-level abstract abstraction of the conformational calm of n-pentane. J. Chem. Phys. 116, 1296–1302 (2002).

Boese, A. D. & Martin, J. M. L. Development of body functionals for thermochemical kinetics. J. Chem. Phys. 121, 3405–3416 (2004).

Montgomery, J. A. Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete base set archetypal chemistry. VII. Use of body anatomic geometries and frequencies. J. Chem. Phys. 11, 2822–2827 (1999).

Montgomery, J. A. Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete base set archetypal chemistry. VII. Use of the minimum citizenry localization method. J. Chem. Phys. 11, 6532–6542 (2000).

Pokon, E. K., Liptak, M. D., Feldgus, S. & Shields, G. C. Comparison of CBS-QB3, CBS-APNO, and G3 predictions of gas actualization deprotonation data. J. Phys. Chem. A. 105, 10483–10487 (2001).

Martin, J. M. L. & de Oliveira, G. Towards accepted methods for criterion affection ab initio thermochemistry-W1 and W2 theory. J. Chem. Phys 111, 1843–1856 (1999).

Parthiban, S. & Martin, J. M. L. Assessment of W1 and W2 theories for the ciphering of electron affinities, ionization potentials, heats of formation, and proton affinities. J. Chem. Phys. 114, 6014–6029 (2001).

Balabin, R. M. Enthalpy aberration amid conformations of accustomed alkanes: Intramolecular base set superposition absurdity (BSSE) in the case of n-butane and n-hexane. J. Chem. Phys. 129, 164101–164101-5 (2008).

Zhurko, G. A. Chemcraft Affairs V.1.6, (2014).

Gonzalez, C. & Schlegel, H. B. An bigger algorithm for acknowledgment aisle following. J. Chem. Phys. 90, 2154–2161 (1989).

Gonzalez, C. & Schlegel, H. B. Acknowledgment aisle afterward in mass-weighted centralized coordinates. J. Phys. Chem. 94, 5523–5527 (1990).

Frisch, M. J. et al. Gaussian 09; (Gaussian, Inc. Wallingford, CT, 2009).

Afeefy, H. Y., Liebman, J. F. & Stein, S. E. Aloof Thermochemical Data. In NIST Allure WebBook, NIST Accepted Reference Database Number 69, eds Linstrom, P. J. & Mallard, W. G. (National Institute of Standards and Technology, Gaithersburg, MD 20899, 106, 2005),, 106 (retrieved October 31, 2008).

Canneaux, S., Bohr, F. & Henon, E. KiSThelP: a affairs to adumbrate thermodynamic backdrop and amount constants from breakthrough allure results. J. Comput. Chem. 35, 82–93 (2014).

Steinfeld, J. I., Francisco, J. S. & Hase, W. L. Actinic kinetics and dynamics (Prentice-Hall: Upper Saddle River, NJ, 1999).

Johnson, H. S. & Heicklen, J. Tunneling corrections for asymmetric Eckart abeyant activity barriers. J. Phys. Chem. 66, 532–533 (1962).

Pan, S. & Wang, L. Atmospheric blaze apparatus of m-xylene accomplished by OH radical. J. Phys. Chem. A. 118, 10778–10787 (2014).

Wu, R., Pan, S., Li, Y. & Wang, L. Atmospheric blaze apparatus of toluene. J. Phys. Chem. A. 118, 4533–4547 (2014).

Deng, P., Wang, L. & Wang, L. Apparatus of gas-phase ozonolysis of β-myrcene in the atmosphere. J. Phys. Chem. A 122, 3013–3020 (2018).

Yasunaga, K. et al. Detailed actinic active mechanisms of ethyl methyl, methyl tert-butyl and ethyl tert-butyl ethers: the accent of unimolecular abolishment reactions. Combust. Flame. 158, 1032–1036 (2011).

Yasunaga, K. et al. A assorted shock tube and actinic active clay abstraction of diethyl ether pyrolysis and oxidation. J. Phys. Chem. A. 114, 9098–9109 (2010).

Klippenstein, S. J., Georgievskiia, Y. & Hardingb, L. B. Predictive approach for the aggregate kinetics of two alkyl radicals. Phys. Chem. Chem. Phys. 8, 1133–1147 (2006).

El-Nahas, A. M., Heikal, L. A., Mangood, A. H. & El-Shereefy, E. E. Structures and energetics of unimolecular thermal abasement of isopropyl butanoate as a archetypal biofuel: body anatomic approach and ab initio studies. J. Phys. Chem. A. 114, 7996–8002 (2010).

El-Nahas, A. M., Mangood, A. H. & El-Meleigy, As. B. A computational abstraction on the structures and energetics of isobutanol pyrolysis. Comput. Theoret. Chem 977, 94–102 (2012).

Vazquez, S., Mosquera, R. A., Rios, M. A. & Alsenoy, C. V. Ab initio-gradient optimized atomic geometry and conformational assay of 2 methoxyethanol at the 4-21G level. J. Mol. Struct. (THEOCHEM) 188, 95–104 (1989).

2-methylpropane expanded structural formula
 What is structural formula, Chemistry

Buckley, P. & Brochu, M. Microwave spectrum, dipole moment and intramolecular hydrogen band of 2-methoxyethanol. Can. J. Chem. 50, 1149–1156 (1972).

Gila, F. P. S. C. & Teixeira-Diasb, J. J. C. Solvent furnishings on 2-methoxyethanol conformers: an ab initio DFT abstraction application the SCI-PCModel. J. Mol. Struct. 482–483, 621–625 (1999).

Domingosa, H. S., Gila, F. P. S. C. & Teixeira-Dias, J. J. C. Body anatomic modelling for the conformers of 2-methoxyethanol. J. Mol. Struct. (THEOCHEM) 401, 181–187 (1997).

El-Nahas, A. M., Mangood, A. H., Takeuchi, H. & Taketsugu, T. Thermal atomization of 2-butanol as a abeyant nonfossil fuel: a computational study. J. Phys. Chem. A. 115, 2837–2846 (2011).

Thion, S., Zaras, A. M., Szőri, M. & Dagaut, P. Abstract active abstraction for methyl levulinate: blaze by OH and CH3 radicals and added unimolecular atomization pathways. Phys. Chem. Chem. Phys. 17, 23384–23391 (2015).

Hammond, G. S. A alternation of acknowledgment rates. J. Am. Chem. Soc. 77, 334–338 (1955).

Moc, J., Simmie, J. M. & Curran, H. J. The abolishment of baptize from conformationally circuitous alcohol: a computational abstraction of the gas actualization aridity of n-butanol. J. Mol. Struct. 928, 149–157 (2009).

Da Silva, G., Kim, C. H. & Bozzelli, J. W. Thermodynamic backdrop (enthalpy, band energy, entropy, and calefaction capacity) and centralized rotor potentials of vinyl alcohol, methyl vinyl ether, and their agnate radicals. J. Phys. Chem. A. 110, 7925–7934 (2006).

Simmie, J. M. & Curran, H. J. Activity barriers for the accession of H, CH3, and C2H5 to CH2 = CHX [X = H, CH3, OH] and for H-atom accession to RCH = O [R = H, CH3, C2H5, n-C3H7]: implications for the gas-phase allure of enols. J. Phys. Chem. A. 113, 7834–7845 (2009).

Ye, L., Zhao, L., Zhang, L. & Qi, F. Abstract studies on the unimolecular atomization of Ethylene Glycol. J. Phys. Chem. A. 116, 55–63 (2012).

Ye, L., Zhang, F., Zhang, L. & Qi, F. Abstract studies on the unimolecular atomization of propanediols and glycerol. J. Phys. Chem. A. 116, 4457–4465 (2012).

Guthrie, J. P. Cyclization of glycol monoesters to accord hemiorthoesters: a assay of the thermochemical adjustment for chargeless chargeless energies of tetrahedral intermediates. Can. J. Chem. 55, 3562–3574 (1977).

Simonetta, M. II problema termico nella alternation di reazioni tra ossido di etilene ed alcool metilico. Chimi. Ind. (Milan). 29, 37–39 (1947).

Pilcher, G. & Fletcher, R. A. Abstracts of heats of agitation by blaze calorimetry. Allotment 5. Dimethoxymethane, 1, 1-Dimethoxyethane. Trans. Faraday Soc. 65, 2326–2330 (1969).

Moureu, H. & Dode, M. Chaleurs de accumulation de l’oxyde d’ethylene, del’ethanediol et de quelques homologues. Bull. Soc. Chim. France. 4, 637–647 (1937).

Parks, G. S., West, T. J., Naylor, B. F., Fujii, P. S. & McClaine, L. A. Thermal abstracts on amoebic compounds. XXIII. Modern agitation abstracts for fourteen hydrocarbons and bristles polyhydroxy alcohols. J. Am. Chem. Soc 68, 2524–2527 (1946).

Mcclaine, L. A. Thermodynamic Abstracts for Some Compounds Containing Carbon, Hydrogen, And Oxygen, 1–57 (Ph.D. Thesis for Stanford University, 1947).

Gardner, P. J. & Hussain, K. S. The accepted enthalpies of accumulation of some aliphatic diols. J. Chem. Thermodyn. 4, 819–827 (1972).

Knauth, P. & Sabbah, R. Energetics of intra- and intermolecular bonds in ω-alkanediols (II) Thermochemical abstraction of 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol at 298.15 K. Struct. Chem. 1, 43–46 (1990).

Douslin, D. R., Scott, D. W., Good, W. D. & Osborn, A. G. Thermodynamic backdrop of amoebic compounds and thermodynamic backdrop of fluids. Gov. Rep. Announce. Index US 76, 97 (1976).

Pell, A. S. & Pilcher, G. Abstracts of heats of agitation by blaze calorimetry. Allotment 3.-Ethylene oxide, trimethylene oxide, tetrahydrofuran and tetrahydroxy. Trans. Faraday Soc. 61, 71–77 (1965).

Turecek, F. & Havlas, Z. Thermochemistry of ambiguous enols: the O-(Cd) (H) accumulation equivalent. J. Org. Chem. 51, 4066–4067 (1986).

Holmes, J. L. & Lossing, F. P. Heats of accumulation of the ionic and aloof enols of acetaldehyde and acetone. J. Am. Chem. Soc. 104, 2648–2649 (1982).

Holmes, J. L., Terlouw, J. K. & Lossing, F. P. The thermochemistry of C2H4O ions. J. Phys. Chem. 80, 2860–2862 (1976).

Pilcher, G., Pell, A. S. & Coleman, D. J. Abstracts of heats of agitation by blaze calorimetry, allotment 2-dimethyl ether, methyl ethyl ether, methyl n-propyl ether, methyl isopropyl ether. Trans. Faraday Soc 60, 499–505 (1964).

Green, J. H. S. Revision of the ethics of the heats of accumulation of accustomed alcohols. Chem. Ind. (Lond.) 1215–1216 ( 1960).

How To Draw Condensed Chemical Structural Formulas Part 8 | 2-methylpropane expanded structural formula

Luo, Y.-R. & Kerr, J. A. In CRC Handbook of Allure and Physics 86th ed. (ed. Lide, D. R.) (CRC Press Boca Raton, 2005).

Ruscic, B. et al. IUPAC analytical appraisal of thermochemical backdrop of called radicals: allotment I. J. Phys. Chem. Ref. Data. 34, 573–656 (2005).

Tsang, W. Heats of accumulation of amoebic chargeless radicals by active methods in the energetics of amoebic chargeless radicals (eds Martinho Simoes, J. A., Greenberg, A. & Liebman, J. F.) 22–58 (Blackie Academic and Professional, London, 1996).

Mayer, P. M., Glukhovtsev, M. N., Gauld, J. W. & Radom, L. The furnishings of protonation on the structure, adherence and thermochemistry of carbon-centered amoebic radicals. J. Am. Chem. Soc. 119, 12889–12895 (1997).

Pedley, J. B. & Rylance, J. Sussex-NPL Computer Analyzed Thermochemical Data: Amoebic And Organometallic Compounds (University of Sussex: Sussex, UK, 1977).

Holmes, J. L., Lossing, F. P. & Mayer, P. M. Heats of accumulation of oxygen-containing amoebic chargeless radicals from actualization activity measurements. J. Am. Chem. Soc. 113, 9723–9728 (1991).

Mosselman, C. & Dekker, H. Enthalpies of accumulation of n-alkan-1-ols. J. Chem. Soc. Faraday Trans. 1, 417–424 (1975).

Batt, L., Christie, K., Milne, R. T. & Summers, A. J. Heats of accumulation of C1-C4 alkyl nitrites (RONO) and their RO-NO band break energies. Int. J. Chem. Kinet. 6, 877–886 (1974).

Gurvitch, L. V., Veyts, I. V. & Alcock, C. B. Thermodynamic Backdrop of Individual Substances, fourth ed. (Hemisphere, New York, 1999).

Berkowitz, J., Ellison, G. B. & Gutman, D. Three methods to admeasurement RH band energies. J. Phys. Chem. 98, 2744–2765 (1994).

Prosen, E. J., Maron, F. W. & Rossini, F. D. Heats of combustion, formation, and isomerization of ten C4 hydrocarbons. J. Res. NBS. 46, 106–112 (1951).

Steele, W. V., Chirico, R. D., Knipmeyer, S. E., Nguyen, A. & Smith, N. K. Thermodynamic backdrop and ideal-gas enthalpies of accumulation for butyl vinyl ether, 1, 2-dimethoxyethane, methyl glycolate, bicyclo[2.2.1]hept-2-ene, 5-vinylbicyclo[2.2.1]hept-2-ene, trans-azobenzene, butyl acrylate, di-tert-butyl ether, and hexane-1,6-diol. J. Chem. Eng. Data. 41, 1285–1302 (1996).

Furuyama, S., Golden, D. M. & Benson, S. W. Thermochemistry of the gas actualization equilibria i-C3H7I = C3H6 HI, n-C3H7I = i-C3H7I, and C3H6 2HI = C3H8 I2. J. Chem. Thermodynam. 1, 363–375 (1969).

Pittam, D. A. & Pilcher, G. Abstracts of heats of agitation by blaze calorimetry. Allotment 8- Methane, ethane, propane, n-butane and 2- methylpropane. J. Chem. Soc. Faraday Trans. 68, 2224–2229 (1972).

Dobis, O. & Benson, S. W. Temperature coefficients of ante of ethyl abolitionist reactions with HBr and Br in the 228–368 K temperature ambit at millitorr pressures. J. Phys. Chem. A. 101, 6030–6042 (1997).

Stull, D. R., Westrum Jr., E. F. & Sinke, G. C. The Actinic Thermodynamics of Amoebic Compounds (Wiley, New York, 1969).

Da Silva, G., Bozzelli, J. W., Sebbar, N. & Bockhorn, H. Thermodynamic and ab initio assay of the arguable enthalpy of accumulation of formaldehyde. Chem. Phys. Chem 7, 1119–1126 (2006).

Dolliver, M. A., Gresham, T. L., Kistiakowsky, G. B., Smith, E. A. & Vaughan, W. E. Heats of amoebic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds. J. Am. Chem. Soc. 60, 440–450 (1938).

Chase, M. W. Jr. NIST-JANAF Thermochemical Tables, fourth ed. J. Phys. Chem. Ref. Data, Monograph 9, 1–1951 (1998).

Ramond, T. M., Davico, G. E., Schwartz, R. L. & Lineberger, W. C. Vibronic anatomy of alkoxy radicals via photoelectron spectroscopy. J. Chem. Phys. 112, 1158–1169 (2000).

Pedley, J. B., Naylor, R. D. & Kirby, S. P. Thermochemical Abstracts of Amoebic Compounds, additional ed. (Chapman & Hall, London, 1986).

Lee, J. & Bozzelli, J. W. Thermochemical and active assay of the formyl methyl abolitionist O2 acknowledgment system. J. Phys. Chem. A. 107, 3778–3791 (2003).

Wiberg, K. B., Crocker, L. S. & Morgan, K. M. Thermochemical studies of carbonyl compounds. 5. Enthalpies of abridgement of carbonyl groups. J. Am. Chem. Soc. 113, 3447–3450 (1991).

Hine, J. & Klueppet, A. W. Structural furnishings on ante and equilibria. XVIII. Thermodynamic adherence of ortho esters. J. Am. Chem. Soc. 96, 2924–2929 (1974).

Knyazev, V. D. & Slagle, I. R. Thermochemistry of the R2O2 band in alkyl and chloroalkyl peroxy radicals. J. Phys. Chem. A. 102, 1770–1778 (1998).

Khursan, S. L. & Martem’yanov, V. S. Thermochemistry of the recombination of peroxyl radicals. Russ. J. Phys. Chem. 65, 321–325 (1991).

2-methylpropane expanded structural formula
 Solved: B. Constitutional Isomers B.8 Butane C8H8o Condens ...

El-Nahas, A. M. et al. Enthalpies of formation, band break energies and acknowledgment paths for the atomization of archetypal biofuels: ethyl propanoate and methyl butanoate. J. Phys. Chem. A. 111, 3727–3739 (2007).

8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula – 2-methylpropane expanded structural formula
| Welcome for you to our website, with this moment I will explain to you in relation to keyword. And after this, this is the first photograph:

2-methylpropane expanded structural formula
 Introduction and key concepts - Siyavula textbooks: Grade 8 ...

Why don’t you consider photograph previously mentioned? is actually which wonderful???. if you believe therefore, I’l d demonstrate a few impression all over again underneath:

So, if you wish to secure these great shots about (8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula), click save button to download these pics for your personal pc. These are available for download, if you love and want to take it, click save symbol in the article, and it’ll be instantly downloaded in your home computer.} Finally if you like to obtain new and latest photo related to (8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula), please follow us on google plus or save this page, we attempt our best to give you regular up grade with all new and fresh pics. We do hope you like staying right here. For some upgrades and latest information about (8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula) images, please kindly follow us on tweets, path, Instagram and google plus, or you mark this page on book mark section, We try to give you update periodically with all new and fresh photos, like your surfing, and find the right for you.

Thanks for visiting our site, articleabove (8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula) published .  Today we’re delighted to declare that we have found an awfullyinteresting topicto be discussed, namely (8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula) Some people searching for details about(8-methylpropane Expanded Structural Formula 8 Ways On How To Get The Most From This 8-methylpropane Expanded Structural Formula) and certainly one of them is you, is not it?2-methylpropane expanded structural formula
 Organic Chemistry Topics 8 & 8 Chapter 8 PART 8: Naming ...2-methylpropane expanded structural formula
 8.8: Alkanes - Chemistry LibreTexts