Border Templates Vector You Will Never Believe These Bizarre Truth Of Border Templates Vector

Bhatt, S. et al. The all-around administration and accountability of dengue. Nature 496, 504–507 (2013).



border templates vector
 Pin by Rasheedanay on Vintage Style Borders | Frame ..

Pin by Rasheedanay on Vintage Style Borders | Frame .. | border templates vector

CAS  PubMed  PubMed Central  Google Scholar 

Gubler, D. J. Dengue/dengue haemorrhagic fever: history and accepted status. Novartis Found. Symp. 277, 3–16 (2006).



PubMed  Google Scholar 



Pierson, T. C. & Diamond, M. S. The actualization of Zika virus and its new analytic syndromes. Nature 560, 573–581 (2018).

CAS  PubMed  Google Scholar 

Roehrig, J. T. West Nile virus in the United States – a actual perspective. Bacilli 5, 3088–3108 (2013).

PubMed  PubMed Central  Google Scholar 

Faria, N. R. et al. Genomic and epidemiological ecology of chicken agitation virus manual potential. Science 361, 894–899 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Ingelbeen, B. et al. Urban chicken agitation outbreak–Democratic Republic of the Congo, 2016: appear added accelerated case detection. PLoS Negl. Trop. Dis. 12, e0007029 (2018).

PubMed  PubMed Central  Google Scholar 

Ling, Y. et al. Chicken agitation in a artisan abiding to China from Angola, March 2016. Emerg. Infect. Dis. 22, 1317–1318 (2016).

PubMed  PubMed Central  Google Scholar 

Young, P. R. Arboviruses: a ancestors on the move. Adv. Exp. Med. Biol. 1062, 1–10 (2018).

CAS  PubMed  Google Scholar 

Tabachnick, W. J. Altitude change and the arboviruses: acquaint from the change of the dengue and chicken agitation viruses. Annu. Rev. Virol. 3, 125–145 (2016).

CAS  PubMed  Google Scholar 

Mansfield, K. L., Hernandez-Triana, L. M., Banyard, A. C., Fooks, A. R. & Johnson, N. Japanese encephalitis virus infection, appraisal and ascendancy in calm animals. Vet. Microbiol. 201, 85–92 (2017).

PubMed  Google Scholar 

Jeffries, C. L. et al. Louping ill virus: an ancient tick-borne ache of Great Britain. J. Gen. Virol. 95, 1005–1014 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

McLean, R. G., Ubico, S. R., Bourne, D. & Komar, N. West Nile virus in livestock and wildlife. Curr. Top. Microbiol. Immunol. 267, 271–308 (2002).

CAS  PubMed  Google Scholar 

Venter, M. Assessing the zoonotic abeyant of arboviruses of African origin. Curr. Opin. Virol. 28, 74–84 (2018).

PubMed  Google Scholar 

Zhang, W., Chen, S., Mahalingam, S., Wang, M. & Cheng, A. An adapted appraisal of avian-origin Tembusu virus: a anew arising aerial Flavivirus. J. Gen. Virol. 98, 2413–2420 (2017).

CAS  PubMed  Google Scholar 

Pandit, P. S. et al. Predicting wildlife reservoirs and all-around vulnerability to zoonotic Flaviviruses. Nat. Commun. 9, 5425 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Sirohi, D. & Kuhn, R. J. Zika virus structure, maturation, and receptors. J. Infect. Dis. 216, S935–S944 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Akey, D. L. et al. Flavivirus NS1 structures acknowledge surfaces for associations with membranes and the allowed system. Science 343, 881–885 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Murthy, H. M., Clum, S. & Padmanabhan, R. Dengue virus NS3 serine protease. Crystal appraisal and insights into alternation of the alive armpit with substrates by atomic clay and structural appraisal of mutational effects. J. Biol. Chem. 274, 5573–5580 (1999); retraction 284, 34468 (2009).

Wu, J., Bera, A. K., Kuhn, R. J. & Smith, J. L. Appraisal of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing. J. Virol. 79, 10268–10277 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Shi, Y. & Gao, G. F. Structural appraisal of the Zika virus. Trends Biochem. Sci. 42, 443–456 (2017).

CAS  PubMed  Google Scholar 

Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C. & Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375, 291–298 (1995).

CAS  PubMed  PubMed Central  Google Scholar 

Rey, F. A., Stiasny, K. & Heinz, F. X. Flavivirus structural heterogeneity: implications for corpuscle entry. Curr. Opin. Virol. 24, 132–139 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Lorenz, I. C., Allison, S. L., Heinz, F. X. & Helenius, A. Folding and dimerization of tick-borne encephalitis virus envelope proteins prM and E in the endoplasmic reticulum. J. Virol. 76, 5480–5491 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Prasad, V. M. et al. Appraisal of the adolescent Zika virus at 9 Å resolution. Nat. Struct. Mol. Biol. 24, 184–186 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Elshuber, S., Allison, S. L., Heinz, F. X. & Mandl, C. W. Break of protein prM is all-important for infection of BHK-21 beef by tick-borne encephalitis virus. J. Gen. Virol. 84, 183–191 (2003).

CAS  PubMed  Google Scholar 

Kostyuchenko, V. A. et al. Appraisal of the thermally abiding Zika virus. Nature 533, 425–428 (2016).

CAS  PubMed  Google Scholar 

Sirohi, D. et al. The 3.8 Å resolution cryo-EM appraisal of Zika virus. Science 352, 467–470 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Mukhopadhyay, S., Kim, B. S., Chipman, P. R., Rossmann, M. G. & Kuhn, R. J. Appraisal of West Nile virus. Science 302, 248 (2003).

CAS  PubMed  Google Scholar 

Kuhn, R. J. et al. Appraisal of dengue virus: implications for flavivirus organization, maturation, and fusion. Corpuscle 108, 717–725 (2002).

CAS  PubMed  PubMed Central  Google Scholar 

Byk, L. A. & Gamarnik, A. V. Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol. 3, 263–281 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Therkelsen, M. D. et al. Flaviviruses accept amiss icosahedral symmetry. Proc. Natl Acad. Sci. USA 115, 11608–11612 (2018).

CAS  PubMed  Google Scholar 

Amberg, S. M. & Rice, C. M. Mutagenesis of the NS2B-NS3-mediated break armpit in the flavivirus capsid protein demonstrates a claim for accommodating processing. J. Virol. 73, 8083–8094 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Tassaneetrithep, B. et al. DC-SIGN (CD209) mediates dengue virus infection of animal blooming cells. J. Exp. Med. 197, 823–829 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Navarro-Sanchez, E. et al. Dendritic-cell-specific ICAM3-grabbing non-integrin is capital for the advantageous infection of animal blooming beef by mosquito-cell-derived dengue viruses. EMBO Rep. 4, 723–728 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Dengue virus infectivity depends on envelope protein bounden to ambition corpuscle heparan sulfate. Nat. Med. 3, 866–871 (1997).

CAS  PubMed  Google Scholar 

Meertens, L. et al. The TIM and TAM families of phosphatidylserine receptors arbitrate dengue virus entry. Corpuscle Host Microbe 12, 544–557 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Corver, J. et al. Film admixture activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal archetypal system. Virology 269, 37–46 (2000).

CAS  PubMed  Google Scholar 

Gollins, S. W. & Porterfield, J. S. pH-dependent admixture amid the flavivirus West Nile and liposomal archetypal membranes. J. Gen. Virol. 67, 157–166 (1986).

CAS  PubMed  Google Scholar 

Miner, J. J. et al. The TAM receptor Mertk protects adjoin neuroinvasive viral infection by advancement blood-brain barrier integrity. Nat. Med. 21, 1464–1472 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Chen, J. et al. AXL promotes Zika virus infection in astrocytes by antagonizing blazon I interferon signalling. Nat. Microbiol. 3, 302–309 (2018).

CAS  PubMed  Google Scholar 

Wang, S. et al. Integrin αvβ5 internalizes Zika virus during neural arbor beef infection and provides a able ambition for antiviral therapy. Corpuscle Rep. 30, 969–983 (2020).

CAS  PubMed  Google Scholar 

Zhu, Z. et al. Zika virus targets glioblastoma arbor beef through a SOX2-integrin αvβ5 axis. Corpuscle Arbor Cell. 26, 187–204 (2020).

CAS  PubMed  Google Scholar 

Hackett, B. A. & Cherry, S. Flavivirus internalization is adapted by a size-dependent endocytic pathway. Proc. Natl Acad. Sci. USA 115, 4246–4251 (2018).

CAS  PubMed  Google Scholar 

Hackett, B. A. et al. RNASEK is appropriate for internalization of assorted acid-dependent viruses. Proc. Natl Acad. Sci. USA 112, 7797–7802 (2015).

CAS  PubMed  Google Scholar 

Perreira, J. M. et al. RNASEK is a V-ATPase-associated agency appropriate for endocytosis and the archetype of rhinovirus, affliction A virus, and dengue virus. Corpuscle Rep 12, 850–863 (2015).

CAS  PubMed  Google Scholar 

Chao, L. H., Klein, D. E., Schmidt, A. G., Pena, J. M. & Harrison, S. C. Sequential conformational rearrangements in flavivirus film fusion. eLife 3, e04389 (2014).

PubMed  PubMed Central  Google Scholar 

Chao, L. H. et al. How small-molecule inhibitors of dengue-virus infection baffle with viral film fusion. eLife 7, e36461 (2018).

PubMed  PubMed Central  Google Scholar 

Gebhard, L. G., Filomatori, C. V. & Gamarnik, A. V. Anatomic RNA elements in the dengue virus genome. Bacilli 3, 1739–1756 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Barrows, N. J. et al. Biochemistry and atomic appraisal of flaviviruses. Chem. Rev. 118, 4448–4482 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Aktepe, T. E. & Mackenzie, J. M. Shaping the flavivirus archetype complex: It is curvaceous! Cell. Microbiol. 20, e12884 (2018).

PubMed  PubMed Central  Google Scholar 

Welsch, S. et al. Composition and three-dimensional architectonics of the dengue virus archetype and accumulation sites. Corpuscle Host Microbe 5, 365–375 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Jordan, T. X. & Randall, G. Flavivirus accentuation of cellular metabolism. Curr. Opin. Virol. 19, 7–10 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Heaton, N. S. & Randall, G. Dengue virus and autophagy. Bacilli 3, 1332–1341 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Aktepe, T. E., Liebscher, S., Prier, J. E., Simmons, C. P. & Mackenzie, J. M. The host protein reticulon 3.1A is activated by flaviviruses to facilitate film remodelling. Corpuscle Rep. 21, 1639–1654 (2017).

CAS  PubMed  Google Scholar 

Yi, Z., Yuan, Z., Rice, C. M. & MacDonald, M. R. Flavivirus archetype circuitous accumulation appear by DNAJC14 anatomic mapping. J. Virol. 86, 11815–11832 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Acosta, E. G. & Bartenschlager, R. The adventure for host targets to activity dengue virus infections. Curr. Opin. Virol. 20, 47–54 (2016).

PubMed  Google Scholar 

Burger-Calderon, R. et al. Zika virus infection in Nicaraguan households. PLoS Negl. Trop. Dis. 12, e0006518 (2018).

PubMed  PubMed Central  Google Scholar 

Endy, T. P. et al. Epidemiology of inapparent and appropriate astute dengue virus infection: a -to-be abstraction of primary academy accouchement in Kamphaeng Phet, Thailand. Am. J. Epidemiol. 156, 40–51 (2002).

PubMed  Google Scholar 

Mostashari, F. et al. Catching West Nile encephalitis, New York, 1999: after-effects of a household-based seroepidemiological survey. Lancet 358, 261–264 (2001).

CAS  PubMed  Google Scholar 

Lim, J. K. et al. Abiogenetic absence of chemokine receptor CCR5 is a able accident agency for appropriate West Nile virus infection: a meta-analysis of 4 cohorts in the US epidemic. J. Infect. Dis. 197, 262–265 (2008).

PubMed  Google Scholar 

Sakuntabhai, A. et al. A alternative in the CD209 apostle is associated with severity of dengue disease. Nat. Genet. 37, 507–513 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Murray, K. et al. Accident factors for encephalitis and afterlife from West Nile virus infection. Epidemiol. Infect. 134, 1325–1332 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Iwamoto, M. et al. Manual of West Nile virus from an agency donor to four displace recipients. N. Engl. J. Med. 348, 2196–2203 (2003).

PubMed  Google Scholar 

Thackray, L. B. et al. Oral antibacterial appraisal of mice exacerbates the ache severity of assorted flavivirus infections. Corpuscle Rep. 22, 3440–3453 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Ngo, N. T. et al. Astute administration of dengue shock syndrome: a randomized double-blind allegory of 4 intravenous aqueous regimens in the aboriginal hour. Clin. Infect. Dis. 32, 204–213 (2001).

CAS  PubMed  Google Scholar 

Rothman, A. L. Amnesty to dengue virus: a account of aboriginal antigenic sin and close cytokine storms. Nat. Rev. Immunol. 11, 532–543 (2011).

CAS  PubMed  Google Scholar 

Beatty, P. R. et al. Dengue virus NS1 triggers endothelial permeability and vascular aperture that is prevented by NS1 vaccination. Sci. Transl. Med. 7, 304ra141 (2015).

PubMed  Google Scholar 

Puerta-Guardo, H., Glasner, D. R. & Harris, E. Dengue virus NS1 disrupts the endothelial glycocalyx, arch to hyperpermeability. PLoS Pathog. 12, e1005738 (2016).

PubMed  PubMed Central  Google Scholar 

Vieira, W. T., Gayotto, L. C., de Lima, C. P. & de Brito, T. Histopathology of the animal alarmist in chicken agitation with appropriate accent on the analytic role of the Councilman body. Histopathology 7, 195–208 (1983).

CAS  PubMed  Google Scholar 

Monath, T. P. & Vasconcelos, P. F. Chicken fever. J. Clin. Virol. 64, 160–173 (2015).

PubMed  Google Scholar 

Miner, J. J. & Diamond, M. S. Zika virus pathogenesis and tissue tropism. Corpuscle Host Microbe 21, 134–142 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Mansuy, J. M. et al. Zika virus in berry and spermatozoa. Lancet Infect. Dis. 16, 1106–1107 (2016).

PubMed  Google Scholar 

Joguet, G. et al. Aftereffect of astute Zika virus infection on abettor and virus approval in appraisal fluids: a -to-be empiric study. Lancet Infect. Dis. 17, 1200–1208 (2017).

PubMed  Google Scholar 

Counotte, M. J. et al. Animal manual of Zika virus and added flaviviruses: a alive analytical review. PLoS Med. 15, e1002611 (2018).

PubMed  PubMed Central  Google Scholar 

Maximova, O. A. & Pletnev, A. G. Flaviviruses and the axial afraid system: revisiting neuropathological concepts. Annu. Rev. Virol. 5, 255–272 (2018).

CAS  PubMed  Google Scholar 

Cain, M. D., Salimi, H., Diamond, M. S. & Klein, R. S. Mechanisms of antibiotic aggression into the axial afraid system. Neuron 103, 771–783 (2019).

CAS  PubMed  Google Scholar 

Ludlow, M. et al. Neurotropic virus infections as the account of actual and delayed neuropathology. Acta Neuropathol. 131, 159–184 (2016).

CAS  PubMed  Google Scholar 

Coyne, C. B. & Lazear, H. M. Zika virus — reigniting the TORCH. Nat. Rev. Microbiol. 14, 707–715 (2016).

CAS  PubMed  Google Scholar 

Platt, D. J. et al. Zika virus-related neurotropic flaviviruses affect animal placental explants and account fetal annihilation in mice. Sci. Transl. Med. 10, eaao7090 (2018).

PubMed  PubMed Central  Google Scholar 

Suthar, M. S., Diamond, M. S. & Gale, M. Jr. West Nile virus infection and immunity. Nat. Rev. Microbiol. 11, 115–128 (2013).

CAS  PubMed  Google Scholar 

Ngono, A. E. & Shresta, S. Allowed acknowledgment to dengue and Zika. Annu. Rev. Immunol. 36, 279–308 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Ishikawa, H. & Barber, G. N. STING is an endoplasmic cloth adaptor that facilitates complete allowed signalling. Nature 455, 674–678 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Maringer, K. & Fernandez-Sesma, A. Message in a bottle: acquaint abstruse from animosity of STING signalling during RNA virus infection. Cytokine Advance Agency Rev. 25, 669–679 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

McGuckin Wuertz, K. et al. STING is appropriate for host aegis adjoin neuropathological West Nile virus infection. PLoS Pathog. 15, e1007899 (2019).

PubMed  PubMed Central  Google Scholar 

Schoggins, J. W. Contempo advances in antiviral interferon-stimulated gene biology. F1000Res. 7, 309 (2018).

PubMed  PubMed Central  Google Scholar 

Schoggins, J. W. Interferon-stimulated genes: what do they all do? Annu. Rev. Virol. 6, 567–584 (2019).

CAS  PubMed  Google Scholar 

Miorin, L., Maestre, A. M., Fernandez-Sesma, A. & Garcia-Sastre, A. Animosity of blazon I interferon by flaviviruses. Biochem. Biophys. Res. Commun. 492, 587–596 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Samuel, M. A. & Diamond, M. S. Alpha/beta interferon protects adjoin baleful West Nile virus infection by akin cellular tropism and acceptable neuronal survival. J. Virol. 79, 13350–13361 (2005).

CAS  PubMed  PubMed Central  Google Scholar 

Lazear, H. M. et al. A abrasion archetypal of Zika virus pathogenesis. Corpuscle Host Microbe 19, 720–730 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Lazear, H. M., Nice, T. J. & Diamond, M. S. Interferon-lambda: allowed functions at barrier surfaces and beyond. Amnesty 43, 15–28 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Ma, D. et al. Antiviral aftereffect of interferon lambda adjoin West Nile virus. Antiviral Res. 83, 53–60 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Palma-Ocampo, H. K. et al. Interferon lambda inhibits dengue virus archetype in epithelial cells. Virol. J. 12, 150 (2015).

PubMed  PubMed Central  Google Scholar 

Bayer, A. et al. Blazon III interferons produced by animal placental trophoblasts advise aegis adjoin Zika virus infection. Corpuscle Host Microbe 19, 705–712 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Chen, J. et al. Outcomes of complete Zika ache depend on timing of infection and maternal–fetal interferon action. Corpuscle Rep. 21, 1588–1599 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Jagger, B. W. et al. Gestational date and IFN-lambda signaling adapt ZIKV infection in utero. Corpuscle Host Microbe 22, 366–376 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Gorman, M. J., Poddar, S., Farzan, M. & Diamond, M. S. The interferon-stimulated gene IFITM3 restricts West Nile virus infection and pathogenesis. J. Virol. 90, 8212–8225 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Lucas, T. M., Richner, J. M. & Diamond, M. S. The interferon-stimulated gene Ifi27l2a restricts West Nile virus infection and pathogenesis in a cell-type- and region-specific manner. J. Virol. 90, 2600–2615 (2015).

PubMed  Google Scholar 

Schoggins, J. W. Interferon-stimulated genes: roles in viral pathogenesis. Curr. Opin. Virol. 6, 40–46 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Li, C. et al. 25-Hydroxycholesterol protects host adjoin Zika virus infection and its associated microcephaly in a abrasion model. Amnesty 46, 446–456 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Diamond, M. S. & Farzan, M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 13, 46–57 (2013).

CAS  PubMed  Google Scholar 

Slon Campos, J. L., Mongkolsapaya, J. & Screaton, G. R. The allowed acknowledgment adjoin flaviviruses. Nat. Immunol. 19, 1189–1198 (2018).

CAS  PubMed  Google Scholar 

Fernandez, E. et al. Abrasion and animal monoclonal antibodies assure adjoin infection by assorted genotypes of Japanese encephalitis virus. mBio 9, e00008-18 (2018).

PubMed  PubMed Central  Google Scholar 

Williams, K. L. et al. Ameliorative ability of antibodies defective Fcγ receptor bounden adjoin baleful dengue virus infection is due to acrid authority and blocking of acceptable antibodies. PLoS Pathog. 9, e1003157 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Vogt, M. R. et al. Poorly acrid cross-reactive antibodies adjoin the admixture bend of West Nile virus envelope protein assure in vivo via Fcγ receptor and complement-dependent effector mechanisms. J. Virol. 85, 11567–11580 (2011).

CAS  PubMed  PubMed Central  Google Scholar 

Bournazos, S., DiLillo, D. J. & Ravetch, J. V. The role of Fc–FcγR interactions in IgG-mediated microbial neutralization. J. Exp. Med. 212, 1361–1369 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Muller, D. A. & Young, P. R. The flavivirus NS1 protein: atomic and structural biology, immunology, role in pathogenesis and appliance as a analytic biomarker. Antiviral Res. 98, 192–208 (2013).

CAS  PubMed  Google Scholar 

Reyes-Sandoval, A. & Ludert, J. E. The bifold role of the antibiotic acknowledgment adjoin the flavivirus non-structural protein 1 (NS1) in aegis and immuno-pathogenesis. Front. Immunol. 10, 1651 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Crill, W. D. & Roehrig, J. T. Monoclonal antibodies that bind to area III of dengue virus E glycoprotein are the best able blockers of virus adsorption to Vero cells. J. Virol. 75, 7769–7773 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Pierson, T. C., Fremont, D. H., Kuhn, R. J. & Diamond, M. S. Structural insights into the mechanisms of antibody-mediated abatement of flavivirus infection: implications for vaccine development. Corpuscle Host Microbe 4, 229–238 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Rey, F. A., Stiasny, K., Vaney, M. C., Dellarole, M. & Heinz, F. X. The ablaze and the aphotic ancillary of animal antibiotic responses to flaviviruses: acquaint for vaccine design. EMBO Rep. 19, 206–224 (2018).

CAS  PubMed  Google Scholar 

Katzelnick, L. C. et al. Antibody-dependent accessory of astringent dengue ache in humans. Science 358, 929–932 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Kliks, S. C., Nisalak, A., Brandt, W. E., Wahl, L. & Burke, D. S. Antibody-dependent accessory of dengue virus advance in animal monocytes as a accident agency for dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 40, 444–451 (1989).

CAS  PubMed  Google Scholar 

Netland, J. & Bevan, M. J. CD8 and CD4 T beef in West Nile virus amnesty and pathogenesis. Bacilli 5, 2573–2584 (2013).

PubMed  PubMed Central  Google Scholar 

Weiskopf, D. & Sette, A. T-cell amnesty to infection with dengue virus in humans. Front. Immunol. 5, 93 (2014).

PubMed  PubMed Central  Google Scholar 

Aberle, J. H., Koblischke, M. & Stiasny, K. CD4 T corpuscle responses to flaviviruses. J. Clin. Virol. 108, 126–131 (2018).

CAS  PubMed  Google Scholar 

Yauch, L. E. et al. CD4 T beef are not appropriate for the consecration of dengue virus-specific CD8 T corpuscle or antibiotic responses but accord to aegis afterwards vaccination. J. Immunol. 185, 5405–5416 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Kumar, P. et al. Impaired T abettor 1 activity of nonstructural protein 3-specific T beef in Japanese patients with encephalitis with acoustic sequelae. J. Infect. Dis. 189, 880–891 (2004).

CAS  PubMed  Google Scholar 

Weiskopf, D. et al. Dengue virus infection elicits awful polarized CX3CR1 cytotoxic CD4 T beef associated with careful immunity. Proc. Natl Acad. Sci. USA 112, E4256–4263 (2015).

CAS  PubMed  Google Scholar 

Grifoni, A. et al. Above-mentioned dengue virus acknowledgment shapes T corpuscle amnesty to Zika virus in humans. J. Virol. 91, e01469–17 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Beaumier, C. M. & Rothman, A. L. Cross-reactive anamnesis CD4 T beef adapt the CD8 T-cell acknowledgment to heterologous accessory dengue virus infections in mice in a sequence-specific manner. Viral Immunol. 22, 215–219 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Elong Ngono, A. et al. Mapping and role of the CD8 T corpuscle acknowledgment during primary Zika virus infection in mice. Corpuscle Host Microbe 21, 35–46 (2017).

CAS  PubMed  Google Scholar 

Brien, J. D., Uhrlaub, J. L. & Nikolich-Zugich, J. Careful accommodation and epitope specificity of CD8 T beef responding to baleful West Nile virus infection. Eur. J. Immunol. 37, 1855–1863 (2007).

CAS  PubMed  Google Scholar 

Yauch, L. E. et al. A careful role for dengue virus-specific CD8 T cells. J. Immunol. 182, 4865–4873 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Shrestha, B. & Diamond, M. S. Fas ligand interactions accord to CD8 T-cell-mediated ascendancy of West Nile virus infection in the axial afraid system. J. Virol. 81, 11749–11757 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Shrestha, B., Samuel, M. A. & Diamond, M. S. CD8 T beef crave perforin to bright West Nile virus from adulterated neurons. J. Virol. 80, 119–129 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Wen, J. et al. Identification of Zika virus epitopes reveals immunodominant and careful roles for dengue virus cross-reactive CD8 T cells. Nat. Microbiol. 2, 17036 (2017).

PubMed  PubMed Central  Google Scholar 

Regla-Nava, J. A. et al. Cross-reactive Dengue virus-specific CD8 T beef assure adjoin Zika virus during pregnancy. Nat. Commun. 9, 3042 (2018).

PubMed  PubMed Central  Google Scholar 

Huang, H. et al. CD8 T corpuscle allowed acknowledgment in immunocompetent mice during Zika virus infection. J. Virol. 91, e00900-17 (2017).

PubMed  PubMed Central  Google Scholar 

Jurado, K. A. et al. Antiviral CD8 T beef abet Zika-virus-associated aeroembolism in mice. Nat. Microbiol. 3, 141–147 (2018).

CAS  PubMed  Google Scholar 

Ruzek, D. et al. CD8 T-cells arbitrate immunopathology in tick-borne encephalitis. Virology 384, 1–6 (2009).

CAS  PubMed  Google Scholar 

Mongkolsapaya, J. et al. Aboriginal antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9, 921–927 (2003).

CAS  PubMed  Google Scholar 

Mongkolsapaya, J. et al. T corpuscle responses in dengue hemorrhagic fever: are cross-reactive T beef suboptimal? J. Immunol. 176, 3821–3829 (2006).

CAS  PubMed  Google Scholar 

Bashyam, H. S., Green, S. & Rothman, A. L. Dengue virus-reactive CD8 T beef affectation quantitative and qualitative differences in their acknowledgment to alternative epitopes of heterologous viral serotypes. J. Immunol. 176, 2817–2824 (2006).

CAS  PubMed  Google Scholar 

Mathew, A. & Rothman, A. L. Understanding the addition of cellular amnesty to dengue ache pathogenesis. Immunol. Rev. 225, 300–313 (2008).

CAS  PubMed  Google Scholar 

Weiskopf, D. et al. Comprehensive appraisal of dengue virus-specific responses supports an HLA-linked careful role for CD8 T cells. Proc. Natl Acad. Sci. USA 110, E2046–E2053 (2013).

CAS  PubMed  Google Scholar 

Anez, G., Heisey, D. A., Espina, L. M., Stramer, S. L. & Rios, M. Phylogenetic appraisal of dengue virus types 1 and 4 circulating in Puerto Rico and Key West, Florida, during 2010 epidemics. Am. J. Trop. Med. Hyg. 87, 548–553 (2012).

PubMed  PubMed Central  Google Scholar 

Centers for Ache Ascendancy and Prevention. Dengue hemorrhagic fever—U. S.-Mexico border, 2005. MMWR Morb. Mortal. Wkly Rep. 56, 785–789 (2007).

Google Scholar 

Halstead, S. B., Nimmannitya, S. & Cohen, S. N. Observations accompanying to pathogenesis of dengue hemorrhagic fever. IV. Relation of ache severity to antibiotic acknowledgment and virus recovered. Yale J. Biol. Med. 42, 311–328 (1970).

CAS  PubMed  PubMed Central  Google Scholar 

Burke, D. S., Nisalak, A., Johnson, D. E. & Scott, R. M. A -to-be abstraction of dengue infections in Bangkok. Am. J. Trop. Med. Hyg. 38, 172–180 (1988).

CAS  PubMed  Google Scholar 

Halstead, S. B. Dengue. Lancet 370, 1644–1652 (2007).

PubMed  Google Scholar 

Ngo, N. T. et al. Astute administration of dengue shock syndrome: a randomized double-blind allegory of 4 intravenous aqueous regimens in the aboriginal hour. Clin. Infect. Dis. 32, 204–213 (2001).

CAS  PubMed  Google Scholar 

Graham, R. R. et al. A -to-be seroepidemiologic abstraction on dengue in accouchement four to nine years of age in Yogyakarta, Indonesia I. studies in 1995–1996. Am. J. Trop. Med. Hyg. 61, 412–419 (1999).

CAS  PubMed  Google Scholar 

Simmons, C. P. et al. Maternal antibiotic and viral factors in the pathogenesis of dengue virus in infants. J. Infect. Dis. 196, 416–424 (2007).

PubMed  PubMed Central  Google Scholar 

Hammond, S. N. et al. Differences in dengue severity in infants, children, and adults in a 3-year hospital-based abstraction in Nicaragua. Am. J. Trop. Med. Hyg. 73, 1063–1070 (2005).

PubMed  Google Scholar 

Kalayanarooj, S. & Nimmannitya, S. Analytic presentations of dengue hemorrhagic agitation in breed compared to children. J. Med. Assoc. Thai. 86 Suppl. 3, S673–S680 (2003).

PubMed  Google Scholar 

Smithburn, K. C., Hughes, T. P., Burke, A. W. & Paul, J. H. A neurotropic virus abandoned from the claret of a built-in of Uganda. Am. J. Trop. Med. Hyg. 20, 471–492 (1940).

Google Scholar 

Higgs, S., Schneider, B. S., Vanlandingham, D. L., Klingler, K. A. & Gould, E. A. Nonviremic manual of West Nile virus. Proc. Natl Acad. Sci. USA 102, 8871–8874 (2005).

CAS  PubMed  Google Scholar 

Hubalek, Z. & Halouzka, J. West Nile agitation – a reemerging mosquito-borne viral ache in Europe. Emerg. Inf. Dis. 5, 643–650 (1999).

CAS  Google Scholar 

West Nile Virus: Statistics & Maps (Centers for Ache Ascendancy and Prevention, 2019); https://www.cdc.gov/westnile/statsmaps/index.html

Petersen, L. R. et al. Estimated accumulative accident of West Nile virus infection in US adults, 1999–2010. Epidemiol. Infect. 141, 591–595 (2013).

CAS  PubMed  Google Scholar 

Erdelyi, K. et al. Analytic and pathologic appearance of bearing 2 West Nile virus infections in birds of casualty in Hungary. Vector Borne Zoonotic Dis. 7, 181–188 (2007).

PubMed  Google Scholar 

Veo, C. et al. Evolutionary dynamics of the bearing 2 West Nile virus that acquired the better European epidemic: Italy 2011–2018. Bacilli 11, 814 (2019).

CAS  PubMed Central  Google Scholar 

Phipps, P., Johnson, N., McElhinney, L. M. & Roberts, H. West Nile virus division in Europe. Vet. Rec. 183, 224 (2018).

PubMed  Google Scholar 

Brault, A. C. et al. A audible absolutely called West Nile viral alteration confers added virogenesis in American crows. Nat. Genet. 39, 1162–1166 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Tsai, T. F. New initiatives for the ascendancy of Japanese encephalitis by vaccination: account of a WHO/CVI meeting, Bangkok, Thailand, 13–15 October 1998. Vaccine 18 Suppl. 2, 1–25 (2000).

PubMed  Google Scholar 

Solomon, T. Flavivirus encephalitis. N. Engl. J. Med. 351, 370–378 (2004).

CAS  PubMed  Google Scholar 

Ooi, M. H. et al. The epidemiology, analytic features, and abiding cast of Japanese encephalitis in axial Sarawak, Malaysia, 1997–2005. Clin. Infect. Dis. 47, 458–468 (2008).

PubMed  Google Scholar 

Halstead, S. B. & Thomas, S. J. New Japanese encephalitis vaccines: alternatives to assembly in abrasion brain. Expert Rev. Vaccines 10, 355–364 (2011).

CAS  PubMed  Google Scholar 

Hanna, J. N. et al. Japanese encephalitis in arctic Queensland, Australia, 1998. Med. J. Aust. 170, 533–536 (1999).

CAS  PubMed  Google Scholar 

Simon-Loriere, E. et al. Autochthonous Japanese encephalitis with chicken agitation coinfection in Africa. N. Engl. J. Med. 376, 1483–1485 (2017).

PubMed  Google Scholar 

Mohammed, M. A. et al. Atomic phylogenetic and evolutionary analyses of Muar ache of Japanese encephalitis virus acknowledge it is the missing fifth genotype. Infect. Genet. Evol. 11, 855–862 (2011).

CAS  PubMed  Google Scholar 

Kim, H. et al. Apprehension of Japanese encephalitis virus genotype V in Culex orientalis and Culex pipiens (Diptera: Culicidae) in Korea. PLoS ONE 10, e0116547 (2015).

PubMed  PubMed Central  Google Scholar 

Li, M. H. et al. Genotype V Japanese encephalitis virus is emerging. PLoS Negl. Trop. Dis. 5, e1231 (2011).

PubMed  PubMed Central  Google Scholar 

Connor, B. & Bunn, W. B. The alteration epidemiology of Japanese encephalitis and new data: the implications for new recommendations for Japanese encephalitis vaccine. Trop. Dis. Travel Med. Vaccines 3, 14 (2017).

PubMed  PubMed Central  Google Scholar 

Huang, Y. J. et al. Susceptibility of a Arctic American Culex quinquefasciatus to Japanese encephalitis virus. Vector Borne Zoonotic Dis. 15, 709–711 (2015).

PubMed  Google Scholar 

Johansson, M. A., Vasconcelos, P. F. & Staples, J. E. The accomplished iceberg: ciphering the accident of chicken agitation virus infection from the cardinal of astringent cases. Trans. R. Soc. Trop. Med. Hyg. 108, 482–487 (2014).

PubMed  PubMed Central  Google Scholar 

Tuboi, S. H., Costa, Z. G., da Costa Vasconcelos, P. F. & Hatch, D. Analytic and epidemiological characteristics of chicken agitation in Brazil: appraisal of appear cases 1998–2002. Trans. R. Soc. Trop. Med. Hyg. 101, 169–175 (2007).

PubMed  Google Scholar 

Bryant, J. E., Holmes, E. C. & Barrett, A. D. Out of Africa: a atomic angle on the addition of chicken agitation virus into the Americas. PLoS Pathog. 3, e75 (2007).

PubMed  PubMed Central  Google Scholar 

Barrett, A. D. & Higgs, S. Chicken fever: a ache that has yet to be conquered. Annu. Rev. Entomol. 52, 209–229 (2007).

CAS  PubMed  Google Scholar 

Garske, T. et al. Chicken agitation in Africa: ciphering the accountability of ache and appulse of accumulation anesthetic from beginning and serological data. PLoS Med. 11, e1001638 (2014).

PubMed  PubMed Central  Google Scholar 

Hamlet, A. et al. The melancholia access of altitude and ambiance on chicken agitation manual beyond Africa. PLoS. Negl. Trop. Dis. 12, e0006284 (2018).

PubMed  PubMed Central  Google Scholar 

Hamer, D. H. et al. Baleful chicken agitation in travelers to Brazil, 2018. MMWR Morb. Mortal. Wkly Rep. 67, 340–341 (2018).

PubMed  PubMed Central  Google Scholar 

Rezende, I. M. et al. Persistence of chicken agitation virus alfresco the Amazon basin, causing epidemics in Southeast Brazil, from 2016 to 2018. PLoS Negl. Trop. Dis. 12, e0006538 (2018).

PubMed  PubMed Central  Google Scholar 

Metsky, H. C. et al. Zika virus change and advance in the Americas. Nature 546, 411–415 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Musso, D. et al. Zika virus in French Polynesia 2013–14: appraisal of a completed outbreak. Lancet Infect. Dis. 18, e172–e182 (2018).

PubMed  Google Scholar 

Mlakar, J. et al. Zika virus associated with microcephaly. N. Engl. J. Med. 374, 951–958 (2016).

CAS  PubMed  Google Scholar 

Ali, S. et al. Environmental and amusing change drive the atomic actualization of Zika virus in the Americas. PLoS Negl. Trop. Dis. 11, e0005135 (2017).

PubMed  PubMed Central  Google Scholar 

Liu, Y. et al. Evolutionary accessory of Zika virus infectivity in Aedes aegypti mosquitoes. Nature 545, 482–486 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Faria, N. R. et al. Zika virus in the Americas: aboriginal epidemiological and abiogenetic findings. Science 352, 345–349 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Yuan, L. et al. A audible alteration in the prM protein of Zika virus contributes to fetal microcephaly. Science 358, 933–936 (2017).

CAS  PubMed  Google Scholar 

Watanabe, S., Tan, N. W. W., Chan, K. W. K. & Vasudevan, S. G. Dengue virus and Zika virus serological cross-reactivity and their appulse on pathogenesis in mice. J. Infect. Dis. 219, 223–233 (2019).

CAS  PubMed  Google Scholar 

Klase, Z. A. et al. Zika fetal neuropathogenesis: appraisal of a viral syndrome. PLoS Negl. Trop. Dis. 10, e0004877 (2016).

PubMed  PubMed Central  Google Scholar 

Chavali, P. L. et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science 357, 83–88 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Xia, H. et al. An evolutionary NS1 alteration enhances Zika virus artifice of host interferon induction. Nat. Commun. 9, 414 (2018).

PubMed  PubMed Central  Google Scholar 

Dejnirattisai, W. et al. Dengue virus sero-cross-reactivity drives antibody-dependent accessory of infection with zika virus. Nat. Immunol. 17, 1102–1108 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Li, M. et al. Dengue allowed sera enhance Zika virus infection in animal borderline claret monocytes through Fc gamma receptors. PLoS ONE 13, e0200478 (2018).

PubMed  PubMed Central  Google Scholar 

Halstead, S. B. Biologic affirmation appropriate for Zika ache accessory by dengue antibodies. Emerg. Infect. Dis. 23, 569–573 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Fernandez, E. et al. Animal antibodies to the dengue virus E-dimer epitope accept ameliorative activity adjoin Zika virus infection. Nat. Immunol. 18, 1261–1269 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Abbink, P. et al. Ameliorative and careful ability of a dengue antibiotic adjoin Zika infection in rhesus monkeys. Nat. Med. 24, 721–723 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Bardina, S. V. et al. Accessory of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356, 175–180 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Duehr, J. et al. Tick-borne encephalitis virus vaccine-induced animal antibodies arbitrate negligible accessory of Zika virus infection in vitro and in a abrasion model. mSphere 3, e00011-18 (2018).

PubMed  PubMed Central  Google Scholar 

Wen, J. et al. Dengue virus-reactive CD8 T beef arbitrate cross-protection adjoin consecutive Zika virus challenge. Nat. Commun. 8, 1459 (2017).

PubMed  PubMed Central  Google Scholar 

McCracken, M. K. et al. Appulse of above-mentioned flavivirus amnesty on Zika virus infection in rhesus macaques. PLoS Pathog. 13, e1006487 (2017).

PubMed  PubMed Central  Google Scholar 

Pantoja, P. et al. Zika virus pathogenesis in rhesus macaques is artless by above-mentioned amnesty to dengue virus. Nat. Commun. 8, 15674 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Breitbach, M. E. et al. Primary infection with dengue or Zika virus does not affect the severity of heterologous accessory infection in macaques. PLoS Pathog. 15, e1007766 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

George, J. et al. Above-mentioned acknowledgment to Zika virus decidedly enhances aiguille dengue-2 viremia in rhesus macaques. Sci. Rep. 7, 10498 (2017).

PubMed  PubMed Central  Google Scholar 

Valiant, W. G. et al. Zika ambulatory macaques affectation delayed consecration of anamnestic cross-neutralizing antibiotic responses afterwards dengue infection. Emerg. Microbes Infect. 7, 130 (2018).

PubMed  PubMed Central  Google Scholar 

Terzian, A. C. B. et al. Viral amount and cytokine acknowledgment contour does not abutment antibody-dependent accessory in dengue-primed Zika virus-infected patients. Clin. Infect. Dis. 65, 1260–1265 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Halai, U. A. et al. Maternal Zika virus ache severity, virus load, above-mentioned dengue antibodies, and their accord to bearing outcomes. Clin. Infect. Dis. 65, 877–883 (2017).

PubMed  PubMed Central  Google Scholar 

Draper, C. C. Infection with the Chuku ache of Spondweni virus. West Afr. Med. J. 14, 16–19 (1965).

CAS  PubMed  Google Scholar 

Kokernot, R. H., Smithburn, K. C., Muspratt, J. & Hodgson, B. Studies on arthropod-borne bacilli of Tongaland. VIII. Spondweni virus, an abettor ahead unknown, abandoned from Taeniorhynchus (Mansonioides) uniformis. S. Afr. J. Med. Sci. 22, 103–112 (1957).

CAS  PubMed  Google Scholar 

Haddow, A. D. & Woodall, J. P. Distinguishing amid Zika and Spondweni viruses. Bull. World Bloom Organ. 94, 711–711A (2016).

PubMed  PubMed Central  Google Scholar 

Haddow, A. D. et al. Abiogenetic assuming of Spondweni and Zika bacilli and susceptibility of geographically audible strains of Aedes aegypti, Aedes albopictus and Culex quinquefasciatus (Diptera: Culicidae) to Spondweni virus. PLoS Negl. Trop. Dis. 10, e0005083 (2016).

PubMed  PubMed Central  Google Scholar 

White, S. K., Lednicky, J. A., Okech, B. A., Morris, J. G. Jr & Dunford, J. C. Spondweni virus in field-caught Culex quinquefasciatus mosquitoes, Haiti, 2016. Emerg. Infect. Dis. 24, 1765–1767 (2018).

PubMed  PubMed Central  Google Scholar 

McDonald, E. M., Duggal, N. K. & Brault, A. C. Pathogenesis and animal manual of Spondweni and Zika viruses. PLoS Negl. Trop. Dis. 11, e0005990 (2017).

PubMed  PubMed Central  Google Scholar 

Engel, D. et al. Reconstruction of the evolutionary history and breakdown of Usutu virus, a alone arising arbovirus in Europe and Africa. mBio 7, e01938-15 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Barzon, L. Ongoing and arising arbovirus threats in Europe. J. Clin. Virol. 107, 38–47 (2018).

PubMed  Google Scholar 

Weissenbock, H. et al. Actualization of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, axial Europe. Emerg. Infect. Dis. 8, 652–656 (2002).

PubMed  PubMed Central  Google Scholar 

Cadar, D. et al. Boundless activity of assorted lineages of Usutu virus, western Europe, 2016. Euro. Surveill. 22, 30452 (2017).

PubMed  PubMed Central  Google Scholar 

Pierro, A. et al. Apprehension of specific antibodies adjoin West Nile and Usutu bacilli in advantageous claret donors in arctic Italy, 2010–2011. Clin. Microbiol. Infect. 19, E451–E453 (2013).

CAS  PubMed  Google Scholar 

Gaibani, P. & Rossini, G. An overview of Usutu virus. Microbes Infect. 19, 382–387 (2017).

CAS  PubMed  Google Scholar 

Pauvolid-Correa, A. et al. Ilheus virus abreast in the Pantanal, west-central Brazil. PLoS Negl. Trop. Dis. 7, e2318 (2013).

PubMed  PubMed Central  Google Scholar 

Weyer, J. et al. Animal cases of Wesselsbron disease, South Africa 2010–2011. Vector Borne Zoonotic Dis. 13, 330–336 (2013).

PubMed  Google Scholar 

Pauvolid-Correa, A. et al. Neutralising antibodies for West Nile virus in horses from Brazilian Pantanal. Mem. Inst. Oswaldo Cruz 106, 467–474 (2011).

PubMed  Google Scholar 

Vieira, C. et al. Apprehension of Ilheus virus in mosquitoes from southeast Amazon, Brazil. Trans. R. Soc. Trop. Med. Hyg. 113, 424–427 (2019).

PubMed  Google Scholar 

de Souza Lopes, O., Coimbra, T. L., de Abreu Sacchetta, L. & Calisher, C. H. Actualization of a new arbovirus ache in Brazil. I. Abreast and assuming of the etiologic agent, Rocio virus. Am. J. Epidemiol. 107, 444–449 (1978).

PubMed  Google Scholar 

Medeiros, D. B., Nunes, M. R., Vasconcelos, P. F., Chang, G. J. & Kuno, G. Complete genome assuming of Rocio virus (Flavivirus: Flaviviridae), a Brazilian flavivirus abandoned from a baleful case of encephalitis during an catching in Sao Paulo state. J. Gen. Virol. 88, 2237–2246 (2007).

CAS  PubMed  Google Scholar 

Mitchell, C. J., Monath, T. P. & Cropp, C. B. Experimental manual of Rocio virus by mosquitoes. Am. J. Trop. Med. Hyg. 30, 465–472 (1981).

CAS  PubMed  Google Scholar 

Monath, T. P., Kemp, G. E., Cropp, C. B. & Bowen, G. S. Experimental infection of abode sparrows (Passer domesticus) with Rocio virus. Am. J. Trop. Med. Hyg. 27, 1251–1254 (1978).

CAS  PubMed  Google Scholar 

Pauvolid-Correa, A. et al. Serological affirmation of boundless apportionment of West Nile virus and added flaviviruses in equines of the Pantanal, Brazil. PLoS Negl. Trop. Dis. 8, e2706 (2014).

PubMed  PubMed Central  Google Scholar 

Straatmann, A. et al. Serological affirmation of the apportionment of the Rocio arbovirus (Flaviviridae) in Bahia]. Rev. Soc. Bras. Med. Tro. 30, 511–515 (1997).

CAS  Google Scholar 

Diagne, M. M. et al. Actualization of Wesselsbron virus amid atramentous rat and bodies in Eastern Senegal in 2013. One Bloom 3, 23–28 (2017).

PubMed  PubMed Central  Google Scholar 

Gritsun, T. S., Nuttall, P. A. & Gould, E. A. Tick-borne flaviviruses. Adv. Virus Res. 61, 317–371 (2003).

CAS  PubMed  Google Scholar 

Kemenesi, G. & Banyai, K. Tick-borne flaviviruses, with a focus on Powassan virus. Clin. Microbiol. Rev. 32, e00106-17 (2019).

CAS  PubMed  Google Scholar 

Hermance, M. E. & Thangamani, S. Powassan virus: an arising arbovirus of accessible bloom affair in Arctic America. Vector Borne Zoonotic Dis. 17, 453–462 (2017).

PubMed  PubMed Central  Google Scholar 

Ebel, G. D., Spielman, A. & Telford, S. R. III Phylogeny of Arctic American Powassan virus. J. Gen. Virol. 82, 1657–1665 (2001).

CAS  PubMed  Google Scholar 

Dupuis, A. P. II et al. Abreast of deer beat virus (Powassan virus, bearing II) from Ixodes scapularis and apprehension of antibiotic in bearcat hosts sampled in the Hudson Valley, New York State. Parasit. Vectors 6, 185 (2013).

PubMed  Google Scholar 

Montgomery, R. R. & Murray, K. O. Accident factors for West Nile virus infection and ache in populations and individuals. Expert Rev. Anti. Infect. Ther. 13, 317–325 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Krow-Lucal, E. R., Lindsey, N. P., Fischer, M. & Hills, S. L. Powassan virus ache in the United States, 2006–2016. Vector Borne Zoonotic Dis. 18, 286–290 (2018).

PubMed  PubMed Central  Google Scholar 

Aliota, M. T. et al. The prevalence of zoonotic tick-borne bacilli in Ixodes scapularis calm in the Hudson Valley, New York State. Vector Borne Zoonotic Dis. 14, 245–250 (2014).

PubMed  PubMed Central  Google Scholar 

Knox, K. K. et al. Powassan/deer beat virus and Borrelia burgdorferi infection in Wisconsin beat populations. Vector Borne Zoonotic Dis. 17, 463–466 (2017).

PubMed  PubMed Central  Google Scholar 

Eisen, R. J. & Eisen, L. The blacklegged tick, Ixodes scapularis: an accretion accessible bloom concern. Trends Parasitol. 34, 295–309 (2018).

PubMed  PubMed Central  Google Scholar 

VanBlargan, L. A. et al. An mRNA vaccine protects mice adjoin assorted tick-transmitted flavivirus infections. Corpuscle Rep. 25, 3382–3392 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Gardner, C. L. & Ryman, K. D. Chicken fever: a reemerging threat. Clin. Lab. Med. 30, 237–260 (2010).

PubMed  PubMed Central  Google Scholar 

Halstead, S. B. & Jacobson, J. in Vaccines (eds Plotkin, S.A., Orenstein, W. A. et al.) 311–352 (Saunders, 2008).

Huang, C. Y. et al. Chimeric dengue blazon 2 (vaccine ache PDK-53)/dengue blazon 1 virus as a abeyant applicant dengue blazon 1 virus vaccine. J. Virol. 74, 3020–3028 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Huang, C. Y. et al. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J. Virol. 77, 11436–11447 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Guy, B. et al. Preclinical and analytic development of YFV 17D-based chimeric vaccines adjoin dengue, West Nile and Japanese encephalitis viruses. Vaccine 28, 632–649 (2010).

CAS  PubMed  Google Scholar 

Guirakhoo, F. et al. Construction, safety, and immunogenicity in nonhuman primates of a chimeric chicken fever–dengue virus tetravalent vaccine. J. Virol. 75, 7290–7304 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Whitehead, S. S. Development of TV003/TV005, a audible dose, awful immunogenic alive attenuated dengue vaccine; what makes this vaccine altered from the Sanofi–Pasteur CYD vaccine? Expert Rev. Vaccines 15, 509–517 (2016).

CAS  PubMed  Google Scholar 

Appaiahgari, M. B. & Vrati, S. IMOJEV(®): a Chicken agitation virus-based atypical Japanese encephalitis vaccine. Expert Rev. Vaccines 9, 1371–1384 (2010).

PubMed  Google Scholar 

Zust, R. et al. Rational architecture of a alive attenuated dengue vaccine: 2’-o-methyltransferase mutants are awful attenuated and immunogenic in mice and macaques. PLoS Pathog. 9, e1003521 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Richner, J. M. et al. Vaccine advised aegis adjoin Zika virus-induced complete disease. Corpuscle 170, 273–283 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Fischer, M., Lindsey, N., Staples, J. E. & Hills, S. Japanese encephalitis vaccines: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 59, 1–27 (2010).

PubMed  Google Scholar 

Rendi-Wagner, P. Advances in anesthetic adjoin tick-borne encephalitis. Expert Rev. Vaccines 7, 589–596 (2008).

CAS  PubMed  Google Scholar 

Kasabi, G. S. et al. Coverage and capability of Kyasanur backwoods ache (KFD) vaccine in Karnataka, South India, 2005–10. PLoS Negl. Trop. Dis. 7, e2025 (2013).

PubMed  PubMed Central  Google Scholar 

Hadinegoro, S. R. et al. Ability and abiding assurance of a dengue vaccine in regions of ancient disease. N. Engl. J. Med. 373, 1195–1206 (2015).

CAS  PubMed  Google Scholar 

Addendum to address of the All-around Advisory Committee on Vaccine Assurance (GACVS), 10–11 June 2015. Assurance of CYD-TDV dengue vaccine. Wkly Epidemiol Rec. 90, 421–423 (2015).

Sridhar, S. et al. Aftereffect of dengue serostatus on dengue vaccine assurance and efficacy. N. Engl. J. Med. 379, 327–340 (2018).

PubMed  Google Scholar 

Halstead, S. B. Dengvaxia sensitizes seronegatives to vaccine added ache behindhand of age. Vaccine 35, 6355–6358 (2017).

CAS  PubMed  Google Scholar 

Biswal, S. et al. Ability of a tetravalent dengue vaccine in advantageous accouchement and adolescents. N. Engl. J. Med. 381, 2009–2019 (2019).

CAS  PubMed  Google Scholar 

Whitehead, S. S. et al. In a randomized trial, the alive attenuated tetravalent dengue vaccine TV003 is well-tolerated and awful immunogenic in capacity with flavivirus acknowledgment above-mentioned to vaccination. PLoS Negl. Trop. Dis. 11, e0005584 (2017).

PubMed  PubMed Central  Google Scholar 

Collins, M. H. et al. Lack of abiding cross-neutralizing antibodies adjoin Zika virus from dengue virus infection. Emerg. Infect. Dis. 23, 773–781 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Montoya, M. et al. Longitudinal appraisal of antibiotic cross-neutralization afterward Zika virus and dengue virus infection in Asia and the Americas. J. Infect. Dis. 218, 536–545 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Balmaseda, A. et al. Antibody-based appraisal discriminates Zika virus infection from added flaviviruses. Proc. Natl Acad. Sci. USA 114, 8384–8389 (2017).

CAS  PubMed  Google Scholar 

Lindsey, N. P. et al. Ability to serologically affirm contempo Zika virus infection in areas with capricious accomplished accident of dengue virus infection in the United States and U.S. territories in 2016. J. Clin. Microbiol. 56, e01115-17 (2017).

PubMed  PubMed Central  Google Scholar 

Richner, J. M. et al. Modified mRNA vaccines assure adjoin Zika virus infection. Corpuscle 168, 1114–1125 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Diamond, M. S., Ledgerwood, J. E. & Pierson, T. C. Zika virus vaccine development: advance in the face of new challenges. Annu. Rev. Med. 70, 121–135 (2019).

CAS  PubMed  Google Scholar 

Casey, R. M. et al. Immunogenicity of fractional-dose vaccine during a chicken agitation beginning – final report. N. Engl. J. Med. 381, 444–454 (2019).

CAS  PubMed  Google Scholar 

Eyer, L., Nencka, R., de Clercq, E., Seley-Radtke, K. & Ruzek, D. Nucleoside analogs as a affluent antecedent of antiviral agents alive adjoin arthropod-borne flaviviruses. Antivir. Chem. Chemother. 26, 1–28 (2018).

Google Scholar 

Niyomrattanakit, P. et al. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J. Virol. 84, 5678–5686 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. L., Yokokawa, F. & Shi, P. Y. The chase for nucleoside/nucleotide analog inhibitors of dengue virus. Antiviral Res. 122, 12–19 (2015).

CAS  PubMed  Google Scholar 

Warren, T. K. et al. Aegis adjoin filovirus diseases by a atypical broad-spectrum nucleoside alternation BCX4430. Nature 508, 402–405 (2014).

CAS  PubMed  PubMed Central  Google Scholar 

Julander, J. G. et al. Ability of the broad-spectrum antiviral admixture BCX4430 adjoin Zika virus in corpuscle ability and in a abrasion model. Antiviral Res. 137, 14–22 (2017).

CAS  PubMed  Google Scholar 

Bullard-Feibelman, K. M. et al. The FDA-approved biologic sofosbuvir inhibits Zika virus infection. Antiviral Res. 137, 134–140 (2017).

CAS  PubMed  Google Scholar 

Dong, H., Zhang, B. & Shi, P. Y. Flavivirus methyltransferase: a atypical antiviral target. Antiviral Res. 80, 1–10 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Lim, S. P. et al. Baby atom inhibitors that selectively block dengue virus methyltransferase. J. Biol. Chem. 286, 6233–6240 (2011).

CAS  PubMed  Google Scholar 

Majerova, T., Novotny, P., Krysova, E. & Konvalinka, J. Exploiting the different appearance of Zika and dengue proteases for inhibitor design. Biochimie 166, 132–141 (2019).

CAS  PubMed  Google Scholar 

Nitsche, C. Strategies appear protease inhibitors for arising flaviviruses. Adv. Exp. Med. Biol. 1062, 175–186 (2018).

CAS  PubMed  PubMed Central  Google Scholar 

Li, Z. et al. Existing drugs as broad-spectrum and almighty inhibitors for Zika virus by targeting NS2B-NS3 interaction. Corpuscle Res. 27, 1046–1064 (2017).

CAS  PubMed  PubMed Central  Google Scholar 

Yuan, S. et al. Structure-based assay of clinically accustomed drugs as Zika virus NS2B–NS3 protease inhibitors that potently arrest Zika virus infection in vitro and in vivo. Antiviral Res. 145, 33–43 (2017).

CAS  PubMed  Google Scholar 

Luo, D., Vasudevan, S. G. & Lescar, J. The flavivirus NS2B–NS3 protease-helicase as a ambition for antiviral biologic development. Antiviral Res. 118, 148–158 (2015).

CAS  PubMed  Google Scholar 

Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. A ligand-binding abridged in the dengue virus envelope glycoprotein. Proc. Natl Acad. Sci. USA 100, 6986–6991 (2003).

CAS  PubMed  Google Scholar 

Poh, M. K. et al. A baby atom admixture inhibitor of dengue virus. Antiviral Res. 84, 260–266 (2009).

CAS  PubMed  Google Scholar 

Schmidt, A. G., Lee, K., Yang, P. L. & Harrison, S. C. Small-molecule inhibitors of dengue-virus entry. PLoS Pathog. 8, e1002627 (2012).

CAS  PubMed  PubMed Central  Google Scholar 

Schmidt, A. G., Yang, P. L. & Harrison, S. C. Peptide inhibitors of flavivirus access acquired from the E protein stem. J. Virol. 84, 12549–12554 (2010).

CAS  PubMed  PubMed Central  Google Scholar 

Schmidt, A. G., Yang, P. L. & Harrison, S. C. Peptide inhibitors of dengue-virus access ambition a late-stage admixture intermediate. PLoS Pathog. 6, e1000851 (2010).

PubMed  PubMed Central  Google Scholar 

Byrd, C. M. et al. A atypical inhibitor of dengue virus archetype that targets the capsid protein. Antimicrob. Agents Chemother. 57, 15–25 (2013).

CAS  PubMed  PubMed Central  Google Scholar 

Scaturro, P. et al. Assuming of the approach of activity of a almighty dengue virus capsid inhibitor. J. Virol. 88, 11540–11555 (2014).

PubMed  PubMed Central  Google Scholar 

Smith, J. L. et al. Assuming and structure-activity accord appraisal of a chic of antiviral compounds that anon bind dengue virus capsid protein and are congenital into virions. Antiviral Res. 155, 12–19 (2018).

CAS  PubMed  Google Scholar 

Shaw, W. R. & Catteruccia, F. Vector appraisal meets ache control: application basal analysis to action vector-borne diseases. Nat. Microbiol. 4, 20–34 (2019).

CAS  PubMed  Google Scholar 

Moreira, L. A. et al. A Wolbachia symbiont in Aedes aegypti banned infection with dengue, Chikungunya, and Plasmodium. Corpuscle 139, 1268–1278 (2009).

PubMed  Google Scholar 

Dutra, H. L. et al. Wolbachia blocks currently circulating Zika virus isolates in Brazilian Aedes aegypti mosquitoes. Corpuscle Host Microbe 19, 771–774 (2016).

CAS  PubMed  PubMed Central  Google Scholar 

Carrington, L. B. et al. Field- and clinically acquired estimates of Wolbachia-mediated blocking of dengue virus manual abeyant in Aedes aegypti mosquitoes. Proc. Natl Acad. Sci. USA 115, 361–366 (2018).

CAS  PubMed  Google Scholar 

Thomas, S., Verma, J., Woolfit, M. & O’Neill, S. L. Wolbachia-mediated virus blocking in mosquito beef is abased on XRN1-mediated viral RNA abasement and afflicted by viral archetype rate. PLoS Pathog. 14, e1006879 (2018).

PubMed  PubMed Central  Google Scholar 

Ferguson, N. M. et al. Clay the appulse on virus manual of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci. Transl. Med. 7, 279ra237 (2015).

Google Scholar 

Hoffmann, A. A. et al. Adherence of the wMel Wolbachia infection afterward aggression into Aedes aegypti populations. PLoS Negl. Trop. Dis. 8, e3115 (2014).

PubMed  PubMed Central  Google Scholar 

Anders, K. L. et al. The AWED balloon (Applying Wolbachia to Eliminate Dengue) to appraise the ability of Wolbachia-infected mosquito deployments to abate dengue accident in Yogyakarta, Indonesia: abstraction agreement for a array randomised controlled trial. Trials 19, 302 (2018).

PubMed  PubMed Central  Google Scholar 

Franz, A. W. et al. Fitness appulse and adherence of a transgene appointment attrition to dengue-2 virus afterward introgression into a genetically assorted Aedes aegypti strain. PLoS Negl. Trop. Dis. 8, e2833 (2014).

PubMed  PubMed Central  Google Scholar 

Buchman, A. et al. Engineered attrition to Zika virus in transgenic Aedes aegypti cogent a polycistronic array of constructed baby RNAs. Proc. Natl Acad. Sci. USA 116, 3656–3661 (2019).

CAS  PubMed  Google Scholar 

Hadler, J. L. et al. Assessment of arbovirus surveillance 13 years afterwards addition of West Nile virus, United States. Emerg. Infect. Dis. 21, 1159–1166 (2015).

CAS  PubMed  PubMed Central  Google Scholar 

Kose, N. et al. A lipid-encapsulated mRNA encoding a potently acrid animal monoclonal antibiotic protects adjoin chikungunya infection. Sci. Immunol. 4, eaaw6647 (2019).

CAS  PubMed  PubMed Central  Google Scholar 

Border Templates Vector You Will Never Believe These Bizarre Truth Of Border Templates Vector – border templates vector
| Pleasant to be able to my personal website, with this time period I’m going to demonstrate concerning keyword. And today, this can be the primary image:

Last Updated: June 6th, 2020 by admin
Army Purchase Request Memo 4 Questions To Ask At Army Purchase Request Memo Income Tax Form 3-3 Gujarati Ten Ingenious Ways You Can Do With Income Tax Form 3-3 Gujarati Order Online Meat How Order Online Meat Can Increase Your Profit! Cremation Order Of Service Template Uk Is Cremation Order Of Service Template Uk The Most Trending Thing Now? Income Tax Filing Upon Death Why Is Income Tax Filing Upon Death Considered Underrated? Work Order Format Under Gst What You Know About Work Order Format Under Gst And What You Don’t Know About Work Order Format Under Gst Purchase Order Template Numbers 4 Gigantic Influences Of Purchase Order Template Numbers Purchase Order Log Template 3 Facts That Nobody Told You About Purchase Order Log Template Purchase Order Procedure Template Why Is Purchase Order Procedure Template Considered Underrated?